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Abstract : Hendry (2011) outlines a coherent framework for generating, analyzing,
and justifying empirical macro-econometric evidence. The current paper focuses on
two key tools in that framework– automated model selection and impulse indicator
saturation– and illustrates and generalizes those tools by re-analyzing the empirical
model of seasonally unadjusted UK narrow money demand in Ericsson, Hendry, and
Tran (1994). Both tools demonstrate the robustness of that model to a wide range
of feasible alternatives. Those tools also yield statistical and economic improvements
to that model and, in so doing, provide insights into the practical justification of
empirical evidence in macro-economics.
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1 Introduction

Economists are highly divided in their views on the role of empirical evidence in the
profession. Hendry (2011) outlines a coherent framework for generating, analyzing,
and justifying empirical macro-econometric evidence. The current paper discusses
two key tools in that framework– automated model selection and impulse indicator
saturation– and illustrates and generalizes those tools by re-analyzing the empirical
model of seasonally unadjusted UK narrow money demand in Ericsson, Hendry, and
Tran (1994). Both tools demonstrate the robustness of that model to a wide range
of feasible alternatives. Those tools also yield statistical and economic improvements
to that model and, in so doing, provide insights into the practical justification of
empirical evidence in macro-economics.
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This paper is organized as follows. Section 2 briefly describes the economic theory,
data, and empirical model in Ericsson, Hendry, and Tran (1994); and it re-evaluates
that model with automated model selection. Section 3 proposes extensions to impulse
indicator saturation, and it employs impulse indicator saturation and some of those
extensions to test for parameter constancy in Ericsson, Hendry, and Tran’s (1994)
model. Section 4 develops a new empirical model of UK narrow money demand in
light of the methods and evidence in Sections 2 and 3. Section 5 offers a few general
remarks on empirical evidence in macro-econometric modeling.

2 A Model of Seasonally Unadjusted UK Narrow
Money Demand

Ericsson, Hendry, and Tran (1994) (denoted EHT below) design an empirical model
of UK narrow money demand, using seasonally unadjusted data. EHT analyze the
measure of nominal narrow moneyM1 (M), real total final expenditure (TFE) at 1985
prices (Y ), the TFE deflator (P ), and a net interest rate (Rnet) that aims to capture
the opportunity cost of holding money. Money and expenditure are in £ millions, the
deflator is unity for 1985, and the interest rate is in fractions. The data are quarterly,
1963Q1—1989Q2. Allowing for lags and transformations, estimation is over 1964Q3—
1989Q2, which is 100 observations (T = 100). For notational convenience, lowercase
letters denote logs.
EHT test for and find a single cointegrating vector in a fifth-order vector autore-

gression of real money (m−p), real income (y), inflation (∆p), and the net interest rate
(Rnet), including a constant term and seasonal dummies (Q1t, Q2t, Q3t). Furthermore,
the variables y, ∆p, and Rnet appear to be weakly exogenous for that cointegrating
vector, which is interpretable as a money demand relationship. EHT thus turn to
modeling an equilibrium correction model of real money, starting with a fifth-order
autoregressive distributed lag (ADL) in m − p, y, ∆p, Rnet, a constant term, and
seasonal dummies. EHT manually simplify that ADL to the following specification.

̂∆(m− p)t = − 0.95
(0.12)

[∆3(m− p)t−1/3] − 1.07
(0.15)

[(∆pt + ∆pt−4)/2]

+ 0.16
(0.04)

∆2yt−2

− 0.174
(0.013)

(m− p− y)t−1 − 1.189
(0.093)

(
∑2

i=0R
net
t−i/3)

+ 0.038
(0.006)

− 0.012
(0.005)

Q1t + 0.010
(0.005)

Q2t + 0.018
(0.007)

Q3t (1)

T = 100 [1964Q3—1989Q2] R2 = 0.84 σ̂ = 1.348% Inn : F (24, 67) = 0.70

AR : F (5, 86) = 1.03 ARCH : F (4, 92) = 0.48 Normality : χ2(2) = 5.63

RESET : F (2, 89) = 0.81 Hetero : F (13, 86) = 1.26 Form : F (23, 76) = 0.98.
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Equation (1) appears well-specified on the statistics reported, including tests of para-
meter constancy by recursive least squares. See Doornik and Hendry (2009) and
Doornik (2009) for a detailed description of the diagnostic statistics in equation (1).
Autometrics– in Doornik and Hendry’s (2009) econometrics software package

OxMetrics– implements automated model selection in a general-to-specific approach
with diagnostic testing, multi-path search, and resolution of multiple terminal models
through encompassing. Autometrics thus permits examining the possible path depen-
dence of EHT’s model selection: EHT’s model in equation (1) arose from a manual
general-to-specific model search that examined only a very limited number of poten-
tial simplification paths. Applying Autometrics at a 5% target size to a “naturally
nesting” version of the unrestricted fifth-order ADL still obtains equation (1); see
Ericsson (2010) on naturally nesting (and other types of) model representations. In
obtaining equation (1), Autometrics considers 224 (over 16 million) different potential
models.1 Hence, equation (1) is clearly robust to a vast range of feasible alternatives,
and so is robust to the model selection path. Section 3.2 re-examines equation (1)
with impulse indicator saturation, and Section 4 develops a new empirical model on
the existing evidence, with both sections employing automated model selection.
Above, and in Section 3.2, automated model selection is implemented as a diag-

nostic tool , with the right-hand side variables from equation (1) forced (or “fixed”)
to enter the estimated equations in the model search. If those variables are needed in
the final selected model, then forcing them to enter the model helps guide the search
procedure. If those variables are not needed, then that should be apparent in the fi-
nal model from the insignificance of their coeffi cients. In Section 4, automated model
selection is implemented as a model design tool , albeit with the intercept, seasonal
dummies, and long-run economic variables being fixed in the search process.

3 Impulse Indicator Saturation

Impulse indicator saturation (IIS) provides a general procedure for analyzing a model’s
constancy. Specifically, IIS is a generic test for an unknown number of breaks, oc-
curring at unknown times, with unknown duration and magnitude, anywhere in the
sample. Hendry (1999) proposes IIS as a procedure for testing parameter constancy;
see Hendry, Johansen, and Santos (2008), Johansen and Nielsen (2009), and Hendry
and Santos (2010) for further discussion and recent developments.
Many existing procedures can be interpreted as “special cases”of IIS in that they

represent particular algorithmic implementations of IIS. Such special cases include
recursive estimation, rolling regression, the Chow (1960) predictive failure statistic
(including the 1-step, breakpoint, and forecast versions implemented in OxMetrics),
the Andrews (1993) unknown breakpoint test, the Bai and Perron (1998) multiple
breakpoint test, intercept correction (in forecasting), and robust estimation. IIS thus
provides a natural conceptual framework for analyzing a model’s constancy.

1Although Autometrics considers 224 distinct potential models, it actually estimates only 27 of
those models in this instance, owing to the sophisticated nature of Autometrics’s search algorithm;
see Doornik (2009) for details.
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Algorithmically, IIS also solves the problem of having more potential regressors
than observations by testing and selecting over blocks of variables. That approach
aids interpretation of dynamic factor analysis, principal components, and similar
procedures; and it leads to additional tests of parameter constancy. Section 3.1 thus
re-interprets some existing tests as IIS-type tests, and it proposes some extensions
to IIS. To illustrate, Section 3.2 uses IIS and some of those extensions to test for
parameter constancy in EHT’s model.

3.1 Extensions

IIS is a powerful empirical tool for evaluating and improving existing empirical models.
IIS also provides a conceptual framework for interpreting existing tests that leads to
extensions of IIS itself.
Table 1 summarizes IIS, some other existing tests, and some extensions of IIS, all

in terms of the variables involved. A few remarks may be helpful for interpreting the
entries in Table 1. Throughout, T is the sample size, t is the index for time, i is the
index for indicators, k is the index for economic variables (which are denoted xkt),
and K is the total number of potential regressors considered.

1a. Impulse indicator saturation. This is the standard IIS procedure proposed
by Hendry (1999), with selection among the T zero-one impulse indicators {Iit}.

1b. Super saturation. In addition to searching across {Iit}, super saturation
searches across all possible one-off step functions {Sit}. Step functions are of
economic interest because they may capture permanent or long-lasting changes
in regime that are otherwise not incorporated into an empirical model. Statis-
tically and numerically, a step function is a parsimonious representation of a
sequential subset of impulse indicators that have equal coeffi cients.

1c. Super-duper saturation. Partial sums of the partial sums of impulse indica-
tors may also be of economic interest, as those double-sums are broken linear
trends {Tit}. Super-duper saturation searches across {Iit, Sit, Tit}. Obvious ex-
tensions are broken quadratic trends, broken cubic trends, and so forth.

1d. Sequential pairwise impulse indicator saturation. Extensions 1b and 1c
are based on partial sums of the impulse indicators and step functions over
the remaining sample, i.e., for all i ≥ t. Partial sums also can be constructed
over fixed-length windows of impulse indicators. The simplest case is sequential
pairwise IIS, in which sequential pairs of impulse indicators are added together,
i.e., Pit = Iit+Ii+1,t. Pairs (or triplets, or quadruplets, etc.) may parsimoniously
capture effects that are persistent but not permanent. Nonsequential groupwise
IIS is also an option, with some nonsequential groups being of particular interest,
such as groups at a seasonal frequency.

1e. Zero-sum pairwise IIS. Differences of impulse indicators may capture “zero-
sum”effects, with Zit = ∆Iit, and leading to zero-sum pairwise IIS. See Hendry
(1974) and Campos and Ericsson (1999) for empirical examples.
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Table 1: Impulse indicator saturation and some extensions, as characterized by the
variables involved.

Type Name Description Variables Definitions

1a Impulse
indicator
saturation

zero-one
dummies

{Iit} Iit = 1 for t = i,
zero otherwise

1b Super
saturation

step
functions

{Iit, Sit} Sit = 1 for t ≥ i,
zero otherwise

1c Super-
duper
saturation

broken
linear
trends

{Iit, Sit, Tit} Tit = t− i+ 1 for t ≥ i,
zero otherwise

1d Sequential
pairwise
IIS

zero-one-one
dummies

{Pit} Pit = 1 for t = i, i+ 1;
zero otherwise

1e Zero-sum
pairwise
IIS

“plus-one”—
“minus-one”
dummies

{Zit} Zit = +1 for t = i,
Zit = −1 for t = i+ 1,
zero otherwise

2 Many
many
variables

more
variables than
observations

{xkt} xkt =
∑T

i=1
xktIit

3 Factors factors,
principal
components

{fjt} fjt =
∑

∀k
wjkxkt

4 Multiplicative
indicator
saturation

partial
series

{x(i)kt , ∀i, k} x
(i)
kt = 0 for t < i,

x
(i)
kt = xkt for t ≥ i

2. Many many variables. IIS provides a solution for dealing with more poten-
tial variables than observations, i.e., K > T . In the same spirit, block searches
can be applied to a set of economic variables for which there are more variables
than observations. Additionally, every economic series is interpretable as the
weighted sum of the impulse indicators {Iit}, where the weight on each impulse
indicator is the value of the economic series for the observation corresponding
to the impulse indicator. Block searches across many many variables are thus
interpretable as searches across particular, economically interesting combina-
tions of impulse indicators. Many models involve (say) K data aggregation
assumptions with K > T in practice; those assumptions can now be tested. See
Ericsson (2011) for an example of testing such aggregation assumptions in a
global vector autoregression.
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3. Factors. Factors and principal components are weighted sums of economic
variables. So, from #2 above, they are weighted sums of the impulse indicators.
See Stock and Watson (2002, 2005), Bernanke, Boivin, and Eliasz (2005), and
Castle, Clements, and Hendry (2011) for discussions.

4. Multiplicative indicator saturation. If a model’s coeffi cient on xkt is sus-
pected to have changed at a particular date i, a natural way to capture that
change is by including Sitxkt in the model, in addition to xkt, with the coeffi -
cient on Sitxkt picking up the incremental change in the original coeffi cient on
xkt. If the break-point i is itself unknown, block searches with more potential
variables than observations permit considering Sitxkt for all break-point dates i
and variables k. This approach precisely nests the Andrews (1993) unknown
breakpoint test and the Bai and Perron (1998) multiple breakpoint test, aside
from directly allowing the error variance to alter. (IIS does allow the error
variance to alter, but IIS is not very parsimonious in the way that it does so.)

While Table 1 details several interesting extensions of IIS, Table 1 is by no means
an exhaustive list of extensions to IIS. Also, the choice of IIS-type procedure may
itself be a combination of the entries in Table 1; and that choice may affect the
power of the procedure to detect specific alternatives. For instance, the twenty-five
impulse indicators {Iit, i = 76, . . . , 100} are not a particularly parsimonious way of
expressing a step shift that occurs three-quarters of the way through a sample of 100
observations, whereas the single step dummy S76,t is.

3.2 An Application

This subsection applies IIS-type procedures to equation (1) using Autometrics. These
procedures detect anomalies in 1969Q1 and 1969Q2, where those anomalies are of the
same sign and virtually equal magnitude. A sequential pairwise impulse indicator for
those two quarters provides a concise summary. Testing is conducted at an approxi-
mate 1/K target size; see Doornik (2009) and Johansen and Nielsen (2009).
The results with IIS-type procedures can be summarized as follows. IIS at a 1%

target level (K = 100) detects two impulse indicators– one for 1969Q1, and one
for 1969Q2– each with a coeffi cient of about −0.04, representing a growth rate of
real money at about 4% per quarter lower than anticipated by the model. Super
saturation (K = 200) does not detect any indicators at the 0.5% target level, but
it does detect step dummies for 1969Q1 and 1969Q3 at the 1% target level, where
the step dummies’coeffi cients are of opposite sign and virtually identical magnitude.
Sequential pairwise IIS at the 0.33% target size (K = 300) detects a single paired
impulse indicator (denoted P 1969q1q2t ) that is unity for 1969Q1 and 1969Q2, thus
providing a convenient representation of the results from IIS and super saturation.
Multiplicative IS at the 0.1% target size (K = 1100) likewise obtains that single
paired impulse indicator.
No obvious changes in data measurement appear to have occurred in 1969Q1 and

1969Q2; see Clews, Healey, Hoggarth, and Mann (1990) and Topping and Bishop
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(1989). So, it remains to be determined what events induced a temporary decline in
predicted real money in the first half of 1969, above and beyond the determinants
already in equation (1).

4 Model Redesign with Autometrics and IIS

EHT (p. 207) note that equation (1) may be rewritten, re-interpreted, and (possibly)
further simplified by transforming the dependent variable from the growth rate in real
money (i.e., ∆(m−p)t) to the growth rate in nominal money (i.e., ∆mt). This section
examines the implications of that transformation, using Autometrics to re-simplify
the fifth-order ADL described in Section 2.
That ADL can be represented equivalently as an equation with the growth rate

of nominal money as the dependent variable, even though the ADL determines the
log-level of real money. Autometrics with multiplicative impulse saturation at a 0.1%
target size (K = 1025) obtains the following simplification from that transformed
ADL.

∆̂mt =

(
∆4pt

4
− ∆3mt−1

3

)
+ 0.15

(0.04)
∆2(y + p)t−2 − 0.042

(0.009)
P 1969q1q2t

− 0.161
(0.008)

(m− p− y)t−1 − 1.171
(0.048)

(
∑2

i=0R
net
t−i/3)

+ 0.044
(0.005)

− 0.011
(0.004)

Q1t + 0.009
(0.004)

Q2t + 0.015
(0.006)

Q3t (2)

T = 100 [1964Q3—1989Q2] R2 = 0.82 σ̂ = 1.23509%

AR : F (5, 87) = 1.60 ARCH : F (4, 92) = 1.89 Normality : χ2(2) = 1.56

RESET : F (2, 90) = 1.33 Hetero : F (13, 86) = 2.09∗ Form : F (26, 73) = 1.46.

Equation (2) has a straightforward economic interpretation in line with standard
Ss-type inventory models; see especially Miller and Orr (1966), Akerlof (1973, 1979),
Akerlof and Milbourne (1980), Milbourne (1983), and Smith (1986). Nominal money
growth equals the excess of annual inflation over nominal money growth in the past
year, with additional adjustments from lagged money disequilibria, seasonality, and
the acceleration of nominal income. Solved lag coeffi cients from equation (2) are very
similar to those from equation (1). The dynamics of equation (2) is closely linked
to the dynamic economic theory on which it is based. Specifically, the short-run
dynamics of equation (2) is consistent with an Ss-type inventory model that has
nominal short-run bounds, but where those bounds adjust to long-term effects.
Statistically, equation (2) is well-specified, apart from rejection by one test of

heteroscedasticity. That rejection appears to arise from the inclusion of the sequen-
tial paired impulse indicator P 1969q1q2t . The residual standard error in equation (2) is
approximately 10% less than that in equation (1), primarily indicative of the statis-
tical benefits of filtering the observations for 1969Q1—1969Q2.
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Computer-automated model selection with Autometrics demonstrates the robust-
ness of Ericsson, Hendry, and Tran’s (1994) final equilibrium correction model to a
wide range of feasible alternatives. Computer-automated model selection also im-
proves on that model by using multi-path searches with IIS-type procedures. Those
searches would be tedious and prohibitively time-consuming with standard economet-
ric packages.

5 Remarks

Hendry (2011) sketches out how recent econometric tools and software developments
have made empirical modeling an exciting and vibrant enterprise in economics. Addi-
tional results in the statistical theory of model selection– and corresponding software
implementation– will no doubt further aid this endeavor. The current paper serves to
exemplify and illustrate some aspects of how such empirical modeling might proceed.
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